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The use of polynomial functionals of the white noise process is discussed for the 
treatment of nonlinear random processes. It is noted that such treatments are useful 
for nearly-Gaussian processes. Applications of such representations to nonlinear 
systems and to nonlinear fluid mechanics problems (turbulence) are reviewed. 
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1. i N T R O D U C T I O N  

The representation to be discussed in this paper is based upon the white noise process. 
This process was used in early work in connection with discussions of Brownian 
motion. (For a review of this work one can refer to Wiener. 1~3) As will be set forth 
below, the white noise process is used in polynomial functionals to represent Gaussian 
and non-Gaussian processes. Perhaps the earliest work on these representations is 
that of Cameron and Martin. (71 Heuristic extensions of  these representations to deal 
with vector processes have been given by Imamura,  Meecham and Siegel, 119~ and more 
recently, mathematically rigorous extensions have been made by Bergman (~1 in 
conjunction with Professor J. Bass. 

Much work has been done on the application of these stochastic representations 
to filter theory and circuit theory (see, e.g., Van Trees, (4~ Lee and Schetzen, (z6) 
and Schetzen(36)). Similarly there has been a large body of work devoted to the 
application of these representations to fluid flow problems including magnetohydro- 
dynamic turbulence problems (Meecham and Siegel, 1271 Imamura,  Meecham, and 
Siegel, 119) Nihoul, lall Meecham and Jeng, 128~ Saffman(3~)). There has also been much 
effort directed toward the use of these representations in other nonlinear physical 
processes (Barrett, m Gyftopoulos and Hooper,  (~,151 Harris and Lapidus, (16) 
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Vassilopoulos, (41) Kyong and Gyftopoulos(2~)). The various results of these treatments 
and some of the difficulties which have arisen are discussed more fully in succeeding 
sections. 

Parallel to this work dealing with applications of the representation to nonlinear 
physical problems has been mathematical work devoted to developing the theory on 
a rigourous basis�9 In addition to the papers already cited in this connection, one could 
mention, e.g., the work of Ito and Nisio. ('~~ Cameron has continued to develop the 
mathematical aspects of  the theory (see, e.g., Reference 8) in conjunction with 
associates of  his. Our emphasis here will be on the use of  the stochastic representation 
in dealing with physical problems. The reader is referred to the references given for 
the mathematical work which is presently available. 

I t  is the purpose of this paper  to show the use of the stochastic representation in 
statistical physics problems or at least to show those applications with which the 
author is familiar�9 I t  is recognized that these methods have been developed fairly 
recently and consequently a review will be helpful. To start our discussion, suppose 
we consider a single random variable a which is Gaussian with unit variance�9 For 
a physical application consider the displacement of  a mass in a one-dimensional 
mass-spring system when the initial displacement is zero, and when the initial velocity 
of  the mass is Gaussianly distributed with a given variance�9 The equation of motion 
is 

2 + , . 2 x  = 0 (1) 

In terms of our random variables this has a solution at later time 

X(t)  = (Vo'/oo)a sin wt  (2) 

where (V0') 2 is the variance of X(0), of the initial velocity. The single random element a 
suffices for this simple problem. Suppose now that the initial velocity has non-Gaussian 
components. We can represent this initial velocity in terms of a polynomial series 
involving the random element a. It  is convenient to use Hermite polynomials, and 
we have 

H (~ ~ 1, H I1) ~ a, H (~) = a ~ - -  1, H (3) : a (3) - -  3",.. (3) 

Note that these separate terms may be said to be statistically orthogonal. That  is, 
using the properties of  the polynomials we have 

( H ( ~  (j)) = i! 3ij 

The initial random velocity of  the particle may be written in terms of functions of  a 
with coefficients as shown 

1 H(a) Vo = <VoH(1)) H (1) -k <VoH(~)) H (2) -k (VoH(Z') ~ -k "'" (4) 

The brackets ( ) indicate ensemble averages throughout this work. The zero-order 
term would appear in this expansion if the average of the initial velocity were not 
zero. The solution of this problem is of course 

%(0 = (Vo/~O) sin ~ t  (5) 
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where the random initial velocity V0 is expressed in terms of the random process 
expansion given in (4). To find the basic, Gaussian random process H (1) (or a) we 
should have to invert Eq. (4). This can be done by successive approximation; that 
is, begin with the approximation 

H m ~ VolVo' (6) 

and successively substitute for terms of progressively higher order in (4). Clearly, 
the problem discussed here is trivial and requires no advance formalism for its 
treatment. It serves merely to define quantities analogous to those to be used below. 
It will be seen that these concepts, after appropriate generalization, are indeed useful 
in the treatment of nonlinear random processes. 

Throughout this paper we use distributions where necessary and assume where 
needed that all functions are sufficiently well-behaved so that we may interchange 
limits. It sould be said that the notation and details of treatment have not yet become 
uniform in the literature. The author adopts here a notation used by many but not 
all workers. 

2. R E V I E W  OF T H E  N O N L I N E A R  R A N D O M  R E P R E S E N T A T I O N  

In this section we review the various generalizations of representations of the 
type given in (3) above. In later sections we treat the use of these representations in 
the examination of physical processes. First of all, consider those discrete processes 
involving more than one random variable. Use for an example the random-initial- 
value three-mode problem. This problem is defined as follows (for a discussion see 
Kraichnan, {2~) Orszag and Bissonnette(aa)): 

& = AiXjX  (7) 

with 

A 1 + A 2 q- A a = 0 

where A i are constant (the condition guarantees that the sum of the variances is 
constant). Here i, j, k are any permutation of 1, 2, 3. For the treatment of such 
problems as this we generalize the representation (3) to include three independent 
Gaussian random processes, 

H (~) with ~HmH(1)3 =- i - i j -  8ij 

H(2) = H a ) H  m (8) 

Hia)iik = H m H a ) H m i  j k - -  - (H(1) i  8j~ + H a)j Ski -~- H~ 1) 8ij), 

Note that these quantities are also statistically orthogonal, 

( H ( i ) H  (j~} = O, i ~ j 
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The processes Xi( t  ) may be represented at a given time by the expressions 

Xi(t  ) = P~( t )  H m~ 4r Qi~s(t) H (2)~ q- "'" (9) 

The coefficients P, Q,... are nonrandom functions of the time. In representations of 
this type the only random elements are the white noise processes. We suppose sum- 
mation from 1 to 3 on repeated indices. In (9) the coefficients P, Q,... become the 
unknowns for an initial-value problem. The representation (9) may be substituted 
into (7) in order to determine these unknown functions. It is known that (7) has an 
equilibrium solution when 

(io) 

It may be verified that the first, Gaussian, term of (9) is sufficient to give statistical 
equilibrium if the variances satisfy (10). 

This is a good place to emphasize the fact that representations of the type (9) are 
not unique though they are complete (for very general classes of processes). Wiener (4a) 
emphasized the possibility of "measure-preserving transformations." To see this 
possibility, consider a single random process of the type (3) undergoing a discon- 
tinuous transformation as follows: 

H m' = - - H  m, ]H(1) I < 1 

= HIt), I H m ] > 1 (11) 

We could represent the random process V 0 in terms of H (1)' with a series similar to 
that given in (4) but with different coefficients, which may be calculated from (11). 
This lack of uniqueness in the representation means that the convergence of a series 
of the type (9) may be improved at later times by permitting both the coefficients 
(P, Q,...) and the white noise processes themselves to be functions of time. To 
guarantee that the properties of the representation do not change, it is sufficient to 
require of the transformation 

( H  (i)" H (~)" ) = ( H  (i) H (5> ~ (12) 
0:1C~2"" BIB2"" .  \ -  e ~ 1 ~ 2 , . . ~ 1 / ~ 2 . . .  - 

for all functionals. Here H (~)' are the transformed functionals. Doi and Imamura (1~> 
have discussed such transformations which are dependent upon a parameter (time). 

There have been a number of recent attempts to improve the convergence 
characteristics of representations of the general type (9) by permitting the white 
noise process to be a function of time. The transformed functionals obey a restriction 
like (12) (see Bodner, (5) Canavan and Leith, (9) Clever(m). In some problems it appears 
that transformations of the representation of this general type will prove most useful. 
It is possible in some cases to avoid the question of the explicit use of such trans- 
formations by formulating the problems in terms of moments (taken to be functions 
of time). The moments will necessarily be invariant under transformations of the 
representation, as can be seen from the basic condition (12). Such an approach is 
adequate for simultaneous correlations (moments), for example. However, to obtain 
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information about time correlations, we are forced to use the representation at different 
times and may be forced to employ the (time) transformed representations as well 
in order to obtain adequate convergence. 

Consider the representation of a random time series using continuous functionals 
patterned after (3). We suppose that the basic white noise process is Hm(t)  with the 
covariance, 

(Hm(t)  gm( t ' ) )  = 8(t -- t') (13) 

with 8 the Dirac delta function and with the higher-order moments those o fa  Gaussian 
process. This process can be thought of as the limit, in the sense of distributions, of 
a process defined in the following way. Suppose the t axis is broken up into discrete 
ceils of width A. Imagine a set of statistically independent Gaussian processes, one 
in each cell A. Further suppose that the variance of each process is A-1. Then, if we 
permit the width of the cell to approach zero, we approach the process described 
in (13). To represent non-Gaussian processes, we need functionals of the white noise 
process HUl(t) as shown 

Hal(t) 

H(~)(q, t2) = Hm(tl)  H(1)(t2) --  8(q -- t2) 

Hta~(tz , t2 , ta) = Hm(q)  HU)(t~.) Hm(ta) (14) 

-- [Ha)(q) 8(t~ -- ta) + HU)(t2) 8(ta -- q) + HU)(ta) 8(q -- t2) ] 

As above, these quantities are constructed so that they are statistically orthogonal: 

(H(i)H 0)) = O, i @ j (15) 

A Gaussian or non-Gaussian time series y(t) may be represented in a way analogous 
to (9): 

y(t) = f P(t; t 0 HU'(q) dq + f f Q(t; q ,  t2) H'2'(q , t~) dq dt2 + "'" (16) 

The functions P, Q,... are nonrandom quantities (usually unknowns to be determined). 
The only random element (as above) in the representation is Hm(t). A quantity 
represented by (16) may in general be nonstationary. A statistically stationary process 
may be represented by using difference arguments as follows: 

y(t) = f P(t -- q) Hm(q)  dtl + f f Q(t - tl , t - t2) H(2)(q, t2) dtl dt2 -i- "'" (17) 

Such a representation would be useful, for example, for the representation of a process 
which is nearly Gaussian and is driven by a statistically stationary, Gausssian forcing 
term, the process having run long enough so that it has become stationary. Alter- 
natively, upon replacing the arguments t by the independent space variable x, it will 
be seen that a representation of the type (16) or (17) is useful in the treatment of 
random-initial-value problems. 
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These representations can be generalized for the treatment of vector processes 
which are functions of vector arguments (see Reference 19). Define the white noise 
process H~)(r). It has covariance 

(H}l)(r) H}t)(r')} = 8ij 8(r -- r') (18) 

patterned after (13). The higher-order moments are those of Gaussian processes. This 
process is made up of a set of white noise processes, a different one for each Cartesian 
direction and each space point, all of  which are statistically independent of one 
another. The variances of these independent Gaussian processes are given by (18). 
Following (14) above, we define the higher-order functionals as follows: 

H}I)([) 

H(2)- H~l)(rl) H)l)(r2) 8,j 8(h i5 ( r l ,  r2) = -- -- r2) 

= 

- -  [H}I)(F1) ajk ~(r 2 - r3) -~ H~l)(r2) aki ~(r 3 - r l)  @ HO)(ra) aij a(rl - r2)] 

(19) 

A general random vector function is represented by integrals analogous to (16). 
Furthermore, if we know that the process is statistically homogeneous, we can 
represent it [see (17)] as follows: 

Ui(r) = f ~ia[[(1)(r~. - -  r l )  Hu(1)(rl) dr1 
(20) 

+ u/~0tr --  rz,  r -- rz) ~ t r l ,  r~) dh  dr2 + "'" 

From the definitions (19) we see that we may require that the nonrandom coefficient 
functions U be symmetric 

Ui~o(rl, r2) = Uio~(r=, rl), etc. (21) 

It is possible to guarantee properties for the ensemble of functions u by building 
the corresponding properties into the coefficients U (/). For example, suppose that 
we require V - u = 0. It  can be guaranteed that every member of the ensemble 
given by (20) will have this property if we require 

U/~(r) = 0 (22) 
Ori 

Further, consider processes whose moments depend only on the vector differences of 
their arguments for their tensor characteristics. (Such processes are ordinarily called 
statistically isotropic.) Statistical properties such as this can be built into the ensemble 
of u by requiring corresponding properties for the nonrandom kernel functions Um. 
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Thus, for example, we can guarantee that the ensemble of  functions u will be statisti- 
cally isotropic if 

U(1)(r) : Fl(r ) rir~ + F2(r)8ij ij ~ ~ (23) 
U(2) ~7~.rl, re) = sum of all combinations of  r ~ ,  r2i, and 8i~ 

Kahng and Siegel (23) habe extended the representation to include pseudo-tensor 
forms. Refbrring to (20), we see that if u is a vector, then we could ask that U I~ 
be a pseudo-tensor if at the same time the white noise process He ~) (h) is a pseudo- 
vector. Similarly, U (2) would be a tensor, as we see from (t9) noting t h a t / ~ )  is a 
true tensor. Higher-order terms have an analogous structure. Furthermore, if u were 
a psuedo-vector, we could represent it in an analogous manner. Indeed, for such 
problems we could have a choice initially of  making either U m or H m a pseudo- 
tensor, and correspondingly for higher-order terms. Such representations are useful 
in several connections, among them being the representation of the magnetic field in 
magnetohydrodynamic turbulence. 

It  is possible to generalize the representation (19) by including an independent 
random processes at each instant of time as well. (2s~ Saffman (35) has used a represen- 
tation of  this type to treat particle diffusion problems. 

An interesting application of these representations can be found in the study of 
the approach of processes to Gaussianity following the central limit theorem. Con- 
Consider, for example, a non-Gaussian process described by the quadratic white 
noise process, 

= (~ y(2)(t') dt '  Y( t )  
d O 

with (24) 

y(2)(t) = Q(t - q ,  t - t2) H(2)(tl , t2) dq  dt2 
~ --GO 

and with H (2t defined in (14). The problem considered here is such that the time 
series y(2) is statistically stationary. We expect by the central limit theorem that Y(t)  
will become Gaussian as t becomes large, and indeed this will be seen to be the case. 
We suppose that Q( t l ,  tz) approaches zero for [ q 1, ] t2 [ >~ to, with to the correlation 
time for the process y(2). To check for Gaussianity, consider the flatness factor 

F.F. = (Ya)/(Y2)~ (25) 

Using (24), we find for the variance 

( y2)  = dr' dt" t' o o . . . . . . .  J _ ~ Q ( t ' - q ,  - t ~ ) Q ( t " - t 3 , t " - t 4 )  
(26) 

• (H(2)(ti, t2) H(~)(t3, t4)} dr1 dr2 dt3 dq 

Averages of  functiona!s of  the type needed in (26) can be found by taking all combi- 
nations of 8 functions but excluding those 8 functions which involve arguments f rom 
a single functional (see Reference 19). For example, here �9 

(H(2) (q ,  t2)H(2)(t~, t4) ) = 8(t: - -  t3) 8(t 2 --  t4) + 8(t: --  q) 3(t~ - -  ta) (27) 
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Using the symmetry in the arguments [similar to (21)] of the nonrandom kernel Q, 
we find 

(Y2(t)) = f dt' f R(T)d-r (28) 
0 ~'  

with 

R(v) = 2 Q(~I -q- ~, T2 + ~-) Q(~-I, ~'2) d~'l dTz 
- -co --co 

where we have changed the inner variables of integration. Here R(~-) is easily found 
from (24) and (27) to be the correlation function for y(~L We find that (28) can be 
written 

= t f  (Y2(t)) -| R(-c) d-c + O(R(O) to 2) (29) 

where the error is obtained from the ends of the interval in the first integral 
of (28), i.e., for t '  near zero or t. The relative error is seen to be of order to/t. (This 
result can be made quantitative of course for particular, individual forms of the 
correlation function.) The result is the familar one obtained for the sum of nearly 
independent processes, in this case non-Gaussian. We can continue with the 
calculation of the fourth-order moment. The algebra won't  be presented here. One 
obtains for (25) 

F.F. = 3 -q- O(to/t ) (30) 

This is the expected result for a nearly Gaussian process. It is evident that the 
result depends critically upon having a process y(~) which becomes uncorrelated for 
sufficiently great time delay. Higher-order moments can be found to be related to the 
variance as in a Gaussian distribution. This establishes the Gaussianity of the process Y 
at a given time. One might wonder whether the joint distribution also approaches the 
Gaussian form. For example, we see from (24) that ~ is equal to the original non- 
Gaussian process, and thus could not be expected to have Gaussian characteristics. 
However, it is easily shown that the variance of I2 is not proportional to t as is the 
variance of :Y [see (29)]. Hence, non-Gaussian joint characteristics form higher-order 
parts of the process. 2 

We consider now the moments of log-normal processes. In general of course the 
calculation of moments of functions of Gaussian processes is difficult. There is one 
special function, the exponential, for which (as is well known) this is simple. Consider 
a random process, here taken for simplicity to be statistically stationary, 

. ( t )  = e ( t -  t ' )  ' (31) 

and consider in turn the random process y defined as follows: 

y = e ~(~) (32) 

The author is indebted to Professor G. K. Batchelor for this observation. 
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Then it is easily shown that the average of y is given by 

<y) = e ~<~2> (33) 

Averages of polynomials in y are easily found from these expressions. 
To complete the discussion of this section we comment on a characteristic of 

representations of the type presented here, i.e., they are realizable. To see this, con- 
sider the stationary process y(t) given by the first two terms of (17). We know, for 
example, from stochastic theory that the energy spectrum of the process y must be 
positive definite. We can construct the energy spectrum by first of all constructing the 
correlation function for y using the properties of the functionals already given and 
finding the energy spectrum from this function by taking the Fourier transform. The 
result is 

E(w) = (2~-) -1 [[ P(co)[ z -]- (1/~) ~~176 [ Q(~I,  co - -  ( .Ol)[  2 d~ (34) 

where P and Q are Fourier transforms of the kernels in (17). Clearly, the energy 
spectrum is positive. Indeed, all such spectra for this purpose would be positive, as 
a result of the fact that the representation (17) is realizable: it represents a realizable 
random process. 

3. A P P L I C A T I O N  T O  E L E C T R I C A L  SYSTEMS A N D  FILTERS 

References to work of the kind discussed in this section have been given above. 
In addition to those references, there is a large number of technical reports relating 
to the use of these functionals in the treatment of filter problems which have been 
issued from (among other institutions) the Research Laboratory of Electronics, 
Massachusetts Institute of Technology. 

We begin by considering a linear process, in particular, one driven by a statis- 
tically stationary forcing term, which process has run long enough so that it has 
become stationary. Consider the following problem: 

R (-fff ) y(t) = f(t) (35) 

wheref(t) is a statistically stationary random process and R is a polynomial function 
with constant coefficients. We suppose that the process has been running long enough 
so that y(t) is also statistically stationary, and of course we assume that the polynomial 
is such that the process is stable. We use a representation like (17) with P, Q .... used 
to represent y(t), and p, q .... to represent the given kernels used to represent the 
processf(t). Then, using the statistical orthogonality of the functionals defined in (14), 
we obtain the following connections between the given quantities and the quantities 
P,Q .... : 

( d ) e(O = p(O 

R W Q ( t - t l , t - t 2 ) = q ( t - q , t - t 2 )  (36) 

822/z/z-S 
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Take Fourier transforms to obtain the result 

P(oJ) ~- p(w)/R(ico) 

Q(~ol, w~) = q(wz,  oJ~)/R(i(co~ q- w~)) 

�9 , , . . . . .  , , o �9 . o o , , . . . .  

(37) 

and then substitute in (34) to obtain the energy spectrum for the process y(t) 

E,j(co) = E~(o2)/J R(ico)l 2 (38) 

with E~ of the spectrum of f .  
Consider now a nonlinear system driven by the idealized white noise process, 

H(1)(t). Suppose that the system is stable and has operated for a sufficient time so that 
the response y(t) is statistically stationary. Lee and Schetzen (26~ have discussed a 
cross-correlation technique for the determination of the kernels in the expansion of 
the process y(t), that is, the determination of the kernels P, Q,... in (17). In our 
notation we have H (z) as an input to a nonlinear circuit with an output y(t). Accepting 
the ergodic hypothesis, we have for the first kernel 

f T  T -1 H(1)(t --  ~-) y(t) dt = (Htz)(t --  r) y(t)) 
0 

= P ( , )  (39) 

where T is a sufficiently long interval of time. It is noted that we take the cross- 
correlation of the output with the input signal alone in order to obtain the coefficient 
of the Gaussian term in the random process expansion. Proceeding now to the second 
kernel, we have 

T -1 f r  Ht2) ( t  __ 7 1 ,  t - -  ~ ' 2 ) y ( t ) d t  = ( H ( ~ ) ( t  - -  ~ ' z ,  t - -  ~ ' z ) y ( t ) )  
~0 

(40) 

or, from (17), 

Q(T1, ~'2) ---= (2T) -1 f r  H ( X ) ( t  _ r z )  H(X)(t - -  r~) y ( t )  dt 
~ 0  

(41) 

In (41) we have dropped a bounded fluctuating term, remembering that the Dirac 
delta function here is replaced where necessary by a quantity proportional to T. 
From (41) we note that the second-order kernel is obtained by multiple cross-correl- 
ation of the output signal with an expression quadratic in the input signal. This 
process can be continued in an analogous way to higher-order terms. Following Lee 
and Schetzen, we have here a method for computing directly the Gaussian and various 
higher-order non-Gaussian terms in the output of a nonlinear circuit (or system) when 
the circuit is driven by a white noise process. We must of course have access to the 
input process itself in order to carry out these correlations. 



Stochastic Representation of Nearly-Gaussian, Nonlinear Processes 35 

4. A P P L I C A T I O N  T O  F L U I D  M E C H A N I C S  

There is a growing body of work devoted to the use of  these stochastic represen- 
tations for the treatment of fluid flow problems, in particular turbulence problems. 
One of the outstanding characteristics of turbulent phenomena is the fact that velocity 
fluctuations at a single point have probabili ty distributions which are nearly 
Gaussian. Cz~ If  a process is to be Gaussian, all odd moments must vanish of course. 
In Fig. 1 we show the results of  experiments performed by Stewart (87~ involving fully 
developed turbulence in a laboratory wind tunnel. The function h is a normalized 
triple-moment as measured in the turbulent flow under the conditions shown, M is 
the mesh size of  a grid which was inserted in the flow, and x is the distance downstream 
from the grid position. I t  is seen that the triple-moment in these measurements is of  
the order of a few percent. Uberoi (39~ has measured even moments in turbulent flow 
and has compared relationships among them with relationships to be expected for 
a Gaussian process. He found nearly Gaussian relationships to within 10-15~ ,  
the size of  the errors in the experiment. On the basis of  much experimental information 
of this type a number of  people have formulated theories based upon nearly-Gaussian 
characteristics. Earlier work involved relationships among the moments, in particular, 
assumptions of  a zero fourth cumulant (Proudman and Reid, (3~ Chandrasekhar(~% 
Ogura C~) calculated results for the formulation of Proudman and Reid. He found that 
the solutions for the particular case which he examined were unacceptable. It  should 
be emphasized that Ogura used an exponential form of initial energy spectrum which 
is known to be far f rom actual fluid equilibrium spectra. It  seems on the basis of  later 
work that nearly-Gaussian theories will not converge properly for initial values too 
far f rom equilibrium form. ~1~ 

There is a large body of more recent work involving the use of  Wiener functionals 
(sometimes called Wiener-Hermite functionals). This work has progressed in two 

0025 [ 

0-02 

• �9 

k' I I I 1 I 
05  I'0 r = x / M  1"5 2-0 25  

Fig. 1. x / M  = 30. Black circles: U = 620 cm/sec; M = 1.27 cm; RM ~- 5300. Light circles: 
U = 620 cm/sec; M = 5.08 cm; RM = 21,200. Crosses: U = 1240 cm/sec; _M = 5.08 cm; RM = 
42,400 (after Stewartt~7~). 
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main groupings. On the one hand much effort has been devoted to model equations 
similar to the actual fluid Navier-Stokes equation. There has been particular emphasis 
upon the Burgers model. (6) This model equation is 

8u &t 8eu 
8t - k U ~ x - - V ~ = 0  (42) 

In statistical work one ordinarily adopts an ensemble of random initial values and 
traces the statistics of the process through later time. This model equation possesses 
a known closed-form solution for the initial-value problem (Hopf (aS~, Cole(Zel). The 
model equation (42) is in certain ways similar to the physical Navier-Stokes equation, 
but of course the model equation is much simpler although still possessing the 
characteristic quadratic nonlinearity of many fluid mechanics problems. All of these 
characteristics taken together have led to considerable interest in the model 
equation (42). Of course for statistical problems it is necessary to have some numerical 
results--they might be called the results of numerical experiments. These experiments 
have been performed by Jeng 12~) and Hirschsohn. (m Numerical experiments have also 
been reported in some of the other references given here. Moomaw lain has examined 
the Gaussianity of this model equation using the closed-form solution. Warming (~21 
and Benton (a) have considered the statistical characteristics of special solutions 
of (42). Thomas (as) and Jeng (221 have considered analogous equations for models of 
magnetohydrodynamic turbulence. 

Meecham and Siegel (~71 have employed the Wiener representation described above 
to treat the random-initial-value problem for the Burgers model equation (42). The 
first two terms were used in the treatment, the function u being written in the form 

u(x) = u(1)(x) + u(')(x) 

: H (xl)dx  + f f  f K(1)(x- xl) (z) (43) 

Equation (43) is then substituted in (42), multiplied successively by H (1) and H (2), and 
averaged to obtain relationships between the unknown kernel functions K m and K %  
In the work under discussion, an approximation was used of the form 

u(2)(x) = _ u  (a) 8u I1) 8x (44) 

(In Reference 27 the approximation was stated in different form but was equivalent 
to this). The energy equation was then constructed using these forms and integrated 
for various initial values of the spatial energy spectrum function. Results are shown 
in Fig. 2. The correlation function and energy spectrum function are defined by 

and 
Q(r, t) = s t) v(x + r, t)) 

f e ~ Q(r, t) dr E(k, t) (45) 
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Fig. 2. 
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Log-log plot of the energy spectrum function for the Burgers model equation using the 
first two terms of the Wiener representation. 

The energy spectrum function approaches the form k -2, which is known to be the 
correct result from numerical experiments already cited. Later work without the 
assumption (44) (Orszag and Bissonnette, (33) Meecham and Su (29) has pointed up 
certain difficulties which occur when the approximation (44) is removed. For Reynolds 
numbers (uL/v, where L is the initial scale for the process) of 5 the total energy as 
given by the first two Wiener functionals follows the numerical experiments quite 
weII for moderate times. This is an interesting result for we know that for such 
Reynolds numbers the process is strongly nonlinear. However, for larger Reynolds 
numbers the results of a two-term theory become progressively less satisfactory. It is 
probable that it will be necessary to use time-dependent white noise' processes to 
adequately represent the nonlinear Burgers model when the process is intensely 
nonlinear. 

Some work has been done on the use of  the random representation discussed 
here in connection with real fluid turbulence. This work has been restricted to statis- 
tically homogeneous and isotropic turbulence which is decaying. Again, the first 
two terms of  the Wiener representation were used. (2s) Equations are obtained, as for 
the treatment of the Burgers model just described, connecting the kernels of the first 
two terms of the Wiener representation. They are somewhat complicated and will 
not be given here. Initial values for the kernels were obtained from laboratory experi- 
ments. (37) The kernel equations were then integrated numerically without further 
approximation. The normalized triple velocity correlation and energy spectrum 
function were calculated from these kernels following methods already set forth, 
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Fig. 3. 
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Triple velocity correlation. Light circles: x/M = 60. Squares: x/M = 90. Black circles: 
x/M = 120 (after Stewart~27J). 

and the results of  these calculations were then compared with the results of  laboratory 
experiments for the decaying, homogeneous turbulence. Results for these later times 
are shown in Fig. 3 for the normalized triple correlation. In  this connection x / M  may 
be thought of  as the time which has elapsed from the initial turbulence generation 
process. In Fig. 3 the curves represent the theoretical calculation based on the first 
two terms in the Wiener expansion. The other symbols represent indicated values for 
the experiments. For simplicity, we have here modified the abscissae. Stewart actually 
used a slightly different form in his plots. The results for the energy spectrum function 
are similar. I t  can be seen from Fig. 3 that the representation of the experiments is less 
than perfect. However, the results are encouraging, and it is likely that they could be 
improved if even more care were taken with the determination of initial values. 

Some recent effort has been devoted to various attempts involving the time 
transformation of the white noise process. It  is likely that these attempts will lead 
to improved forms for the representation of  time-decaying processes. For  various 
expositions of this problem the reader is referred to the work of Bodner, c~ Clever, m~ 
and Canavan and Leith/9) 
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